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Abstract
Next-generation sequencing technologies revolutionized the ways in which genetic information is obtained and have
opened the door for many essential applications in biomedical sciences. Hundreds of gigabytes of data are being pro-
duced, and all applications are affected by the errors in the data. Many programs have been designed to correct
these errors, most of them targeting the data produced by the dominant technology of Illumina.We present a thor-
ough comparison of these programs. Both HiSeq and MiSeq types of Illumina data are analyzed, and correcting per-
formance is evaluated as the gain in depth and breadth of coverage, as given by correct reads and k-mers. Time
and memory requirements, scalability and parallelism are considered as well. Practical guidelines are provided for
the effective use of these tools.We also evaluate the efficiency of the current state-of-the-art programs for correct-
ing Illumina data and provide research directions for further improvement.
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INTRODUCTION
Research in biomedical sciences has been revolutio-

nized by the possibility to sequence the molecule of

DNA. Great demand for rapid and affordable DNA

sequencing caused the replacement of the Sanger

sequencing method [1] by improved technologies

that can produce huge amounts of data at ever

decreasing costs. Fierce competition produced a

number of sequencing technologies, including

Illumina/Solexa, Roche 454, AB SOLiD, Ion

Torent, Pacific Biosciences, etc.; see [2] for details.

These high-throughput technologies enable many

fundamental applications, including de novo genome

assembly, genome resequencing, cancer mutation

discovery, metagenomics, DNA–protein interaction

discovery, personalized medicine, etc. As a result,

highly ambitious projects have been started, such as

the Genome 10 K Project [3] (www.genome10k.

org), whose goal is to obtain the genomes of

10 000 vertebrate species, the 1000 Genomes

Project [4] (www.1000genomes.org), which pro-

poses to obtain the genomes of 1000 genetically

varying humans, and the Human Microbiome pro-

ject [5] (commonfund.nih.gov/Hmp), whose aim is

to characterize the microbial communities found at

several different sites on the human body.

The technology from Illumina is clearly dominat-

ing the market, and the datasets produce by the

Illumina machines are the focus of this work. Most

of the Illumina datasets are currently produced by

two machines with different output. The HiSeq ma-

chines are designed for high output (up to 1000 GB)

to be produced in a longer period (up to 6 days),

with paired reads of length up to 125 bp (typically

2� 100 bp). The MiSeq machines, on the other

hand, are much smaller and cheaper (benchtop plat-

forms) and produce much lower output (up to

15 GB) in a short period (5–55 h) but with longer

reads of up to 300 bp (typically 2� 250 bp; source:

www.illumina.com/systems/sequencing.ilmn).

Both HiSeq and MiSeq datasets have a non-

negligible number of errors (see Datasets Section

for details), and effective correction of errors is cru-

cial for improving the quality of the data. Therefore,

a large number of error-correcting programs have

been designed, including Euler [6], SHREC [7],

Recount [8], Reptile [9], Quake [10], CUDA [11],

HSHREC [12], SOAP [13], HiTEC [14], Coral

[15], DecGPU [16], Hammer [17], ECHO [18],

PSAEC [19], MyHybrid [20], SGA [21], RACER

[22], Musket [23] and BLESS [24]; see also the

survey of Yang et al. [25]. In addition, many
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genome assemblers include their own correction

programs.

With so many programs available, it becomes dif-

ficult for users to know which ones to use and when.

We thoroughly evaluate these programs and provide

guidelines for their effective use, as well as point out

areas of improvement for further research.

Because of the clear domination of the Illumina

platforms, all programs are targeting the correction of

errors produced by these machines, which consist

essentially of substitutions, that is, the correct base

has been erroneously replaced by a different one.

Few programs also provide mechanisms to correct

indel errors, that is, erroneous insertions or deletions

of bases.

The existing evaluation methods in the literature

are either incomplete or inadequate, as explained in

detail in the Evaluation Methodology section. We

use several measures of correctness that provide a

comprehensive picture for the performance of the

correcting programs. A dataset has two main param-

eters that can be improved by correction: ‘depth of

coverage’ (the number of times each base is covered

on the average) and ‘breadth of coverage’ (the pro-

portion of the genome that is covered). Also, the

reads of a dataset can be used as ‘whole reads’ (for

overlap graph-based assembly [21]) or broken into

‘k-mers’ (i.e. subsequences of length k, used in

deBruijn graph-based assembly [13, 26–29]).

Evaluating the gain with respect to each type of

coverage using either whole reads or k-mers gives

our four measures of correctness: READDEPTHGAIN,

KMERDEPTHGAIN, READBREADTHGAIN and

KMERBREADTHGAIN. Precise definitions of these

measures are given in the Evaluation Methodology

section.

We use a variety of datasets, both HiSeq and

MiSeq, from reference genomes ranging from bacteria

to humans. All our datasets are real and have not been

altered in any way. They provide not only a good

assessment of the actual performance of the correcting

programs but also a clear indication of the current

state of the art in correcting Illumina data.

We compare seven programs, BLESS, Coral,

HiTEC, Musket, RACER, SGA and SHREC,

that have performed the best in recent studies [21–

24]. We show that there is no single winner. BLESS,

Musket, RACER and SGA perform the best overall,

each having its own advantages and disadvantages. In

spite of much research in this area, significant room

for improvement remains with respect to both depth

and breadth of coverage. In particular, all programs

actually decrease the breadth of coverage by correct

k-mers, that is, the KMERBREADTHGAIN is always

negative.

Our study is organized as follows. In order, we

present the programs to be compared, describe in

detail the evaluation methodology, introduce our

selection of datasets used for comparison, present

and discuss the results of the comparison and con-

clude with recommendations and directions for

future research.

ERRORCORRECTION PROGRAMS
The programs for error correction can be divided

into three main categories by their approach [25].

Many programs are based on the k-mer spectrum

approach [30], where reads presumed erroneous are

changed so that all their k-mers appear frequently in

the dataset; these include BLESS, CUDA, DecGPU,

Euler, Hammer, Musket, Quake, Recount and

Reptile. A second approach relies on counting

k-mers, with the assumption that correct ones are

much more frequent than those containing errors;

SHREC, HiTEC, HSHREC, PSAEC and

RACER belong here. The third approach uses mul-

tiple sequence alignment, as used by Coral, ECHO

and MyHybrid. We refer the reader to the survey of

[25] for details.

In our study, we have selected for comparison

those programs that performed the best in recent

studies: BLESS, Coral, HiTEC, Musket, RACER,

SGA and SHREC. All three paradigms are covered

by our choice: BLESS, Musket and SGA use k-mer

spectrum, HiTEC, RACER and SHREC count

k-mers, and Coral relies on multiple alignment.

The source code is free for all seven programs and

can be found from the links below:

(i) BLESS: sourceforge.net/projects/bless-ec/

(ii) Coral: www.cs.helsinki.fi/u/lmsalmel/coral/

(iii) HiTEC: www.csd.uwo.ca/�ilie/HiTEC/

(iv) Musket: sourceforge.net/projects/musket/

(v) RACER: www.csd.uwo.ca/�ilie/RACER/

(vi) SGA: github.com/jts/sga/

(vii) SHREC: sourceforge.net/projects/shrec-ec/

EVALUATIONMETHODOLOGY
Evaluating the correcting performance has been

inconsistent throughout the literature. Direct
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evaluation can be done in two ways: using point

correction of single base errors [15, 23, 24] or cor-

rection of whole reads [7, 14, 22]. Indirect evaluation

of correction can be also performed through its

impact on genome assembly quality [15, 21, 23,

24]. Furthermore, some papers use both real and

simulated datasets [7, 23, 24] while others use only

real datasets [14, 15, 21, 22]. We discuss in this sec-

tion the suitability of these approaches while intro-

ducing our four measures of correcting performance

evaluation, aiming at providing a comprehensive and

accurate picture.

To make our definitions precise, we introduce

some notation. Consider a reference genome G of

length L. We denote the ith nucleotide by G½i� and

the subsequence starting at i and ending at j by

G½i:: j�; we have G ¼ G½1::L�. Consider a dataset

of N reads D ¼ fRij1 � i � Ng. The length of a

read R, denoted jRj, is the number of nucleotides

in R; e.g. jACCATGj ¼ 6.

We shall distinguish a read R from its sequence of

nucleotides seqðRÞ. Different reads can have the

same sequence. Denote seqðDÞ ¼ fseqðRÞjR 2 Dg.
A k-mer is a sequence of nucleotides of length k.

To distinguish between k-mers and their sequences,

we introduce the notion of ‘positional k-mer’, that

is, the k-mer starting at position j in read Ri,

Ri½j:: jþ k� 1�, denoted (k, i, j). The set of pos-

itional k-mers is pos-k-mersðDÞ ¼ fðk; i; jÞj
1 � i � N; 1 � j � jRij � kþ 1g. The sequences

of positional k-mers are called simply k-mers. The

set of k-mers occurring in D (or G) is denoted

k-merðDÞ [k-merðGÞ].
As an example, the dataset D ¼ fACCT;

ACCT;GGGGg contains three reads, two sequences

(seqðDÞ ¼ fACCT;GGGGg), nine positional 2-mers

(3 in each read) and four 2-mers (2-merðDÞ ¼
fAC;CC;CT;GGg).

Coverage
Two parameters characterize a dataset and can be

improved by correction: the depth of coverage and

breadth of coverage. The ‘depth of coverage’ is the

average number of times each position in the

genome has been sequenced, that is, 1
L

XN

i¼1
jRij.

The ‘breadth of coverage’ is the fraction of the

genome that is covered by reads. The evaluating

methods we propose quantify the improvement of

these two parameters.

To define precisely the breadth of coverage, we

need to discuss what it means that a position in the

genome is covered by a read or k-mer. Simply being

part of an interval representing a read or k-mer is

insufficient, as the intervals have to overlap signifi-

cantly to assemble into longer, more useful, se-

quences. The overlap can take various values for

overlap graph-based assembly, but it is k–1 for

deBruijn graph-based assembly. For consistency, we

shall always consider this maximum overlap. That

means, we consider reads (or k-mers) starting at

every position. For reads of length ‘ (in case of k-

mers, replace ‘ with k), we define the breadth of

coverage as the ratio of the ‘-mers in the genome

that appear in the dataset, that is, j‘�merðGÞ\‘�merðDÞj
j‘�merðGÞj .

Depth of coverage gain
As mentioned above, two main evaluation

approaches have been proposed in the literature.

One considers the point correction of single errors

[15, 23, 24], and the other takes into account only

successful correction of entire reads [7, 14, 22].

Counting point corrections of single errors may

appear as the natural thing to do; however, it is

not necessarily relevant in practice. Consider two

scenarios. In the first, five errors are corrected in a

read having only five errors. In the second, five errors

are corrected in a read having ten errors. While they

both count as five corrected errors, the former read

becomes error free after correction, thus being more

useful in downstream applications.

A read R is called ‘correct’ if it is found in the

reference genome exactly as given, that is, seqðRÞ ¼
seqðG½i::iþ jRj � 1�Þ, for some 1 � i � L � jRj
þ1; R is called ‘erroneous’ otherwise. Based on

this definition, we have a binary classifier on D
where TP¼ the number of reads that are erroneous

before correction and correct after correction,

TN¼ reads correct both before and after correction,

FP¼ reads correct before and erroneous after correc-

tion and FN¼ reads erroneous both before and after

correction. The ‘depth of coverage read gain’ is then

defined as ReadDepthGain ¼ TP�FP
P ¼ TP�FP

TPþFN. This

means, the total number of correct whole reads

gained, TP – FP, as a fraction of the total number,

P ¼ TP þ FN, of erroneous reads before correction.

The READDEPTHGAIN measures the gain in depth

of coverage as given by correct reads; however, the

impact on the quality of reads in the corrected data-

set is inversely proportional to the quality of the

reads in the initial dataset, as the proportion of the

new correct reads out of the total number of reads

is TP�FP
PþN ¼

P
PþN ReadDepthGain. To evaluate the
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impact of correction, we introduce OrigReadDepth

¼ N
PþN, that is, the ratio between the number of cor-

rect reads in the original dataset and the total number

of reads, and CorrReadDepth ¼ TPþTN
PþN , that is, the

ratio between the number of correct reads in the cor-

rected dataset and the total number of reads. The re-

lation between the original and corrected read depth

and the read depth gain is CorrReadDepth ¼

OrigReadDepthþ P
PþNReadDepthGain, that can

be written as follows:

CorrReadDepth ¼ OrigReadDepth

þReadDepthGainð1�OrigReadDepthÞ: ð1Þ

The above reasoning, relying on read counting,

works well when all reads have the same length. To

accommodate the case when reads have different

lengths, we modify the above definitions so that

the contribution of each read R toward each of

the values TP;TN;FP;FN is jRj instead of 1. This

produces the same values as above for equal length

reads.

Producing error-free reads is an obvious mark for

success, yet we need a more detailed analysis of the

errors corrected. When complete correction is not

achieved, the percentage of the errors corrected be-

comes important. However, the ratio of errors cor-

rected is insufficient by itself to characterize the

quality of correction. Consider again two scenarios.

In both, five errors are corrected inside a read having

ten errors, thus yielding the same percentage of

errors corrected. Assume, however, that in the first

the leftmost five errors are corrected, whereas in the

second every other error is corrected. It is likely that

the former read will have a longer error-free subse-

quence than the latter, again making it more useful

in applications.

Our main point is that a corrected error becomes

useful only if it helps in creating a sufficiently long

error-free subsequence, long enough to warrant

unique positioning in the reference genome

(except for repeats). To account for this, we consider

correction of k-mers, where the value of k is chosen

as the smallest possible that guarantees, with high

probability, unique position in the reference gen-

omes. In all our experiments, we have used k¼ 20,

but the evaluation program allows any value be-

tween 5 and 32. Note that we consider positional

k-mers here.

The precise definition follows. A positional k-mer

(k, i, j) is called ‘correct’ if it can be found in the

reference genome, that is, seqðRi½j::jþ k� 1�Þ ¼

seqðG½‘::iþ k� 1�Þ, for some 1 � ‘ � L� kþ 1;

the positional k-mer (k, i, j) is called ‘erroneous’

otherwise. A binary classifier on pos-k-mersðDÞ, simi-

lar to the one for reads is obtained; TP is the number

of positional k-mers that were erroneous before cor-

rection and correct afterward, etc. The ‘depth of

coverage positional k-mer gain’ is defined as

KmerDepthGain ¼ TP�FP
TPþFN. The KMERDEPTHGAIN

quantifies the gain in depth of coverage as given by

correct positional k-mers. As we did for whole reads,

to evaluate the impact of correction on the quality of

the k-mers, we introduce OrigKmerDepth ¼ N
PþN

and CorrKmerDepth ¼ TPþTN
PþN that again satisfy (1)

with the appropriate modifications:

CorrKmerDepth ¼ OrigKmerDepth

þ KmerDepthGainð1�OrigKmerDepthÞ:

As previously mentioned, the two measures intro-

duced so far, using whole reads and whole k-mers, are

well related to the two main approaches to genome

assembly: overlap graph-based assembly, which re-

quires correct whole reads, and de Bruijn graph-

based assembly, which uses correct whole k-mers.

Breadth of coverage gain
We have shown above that complete correction of

whole reads, as well as of whole positional k-mers, is

a good indication of the correcting performance

from the depth of coverage point of view. For our

other parameter, breadth of coverage, we need

to consider read sequences and k-mers. Consider

again two scenarios. Assume we have two reads,

R1 and R2, R1 having twenty copies, ten of which

erroneous, and R2 having ten copies, five of which

erroneous. In the first scenario, a program P1 corrects

all copies of R1 but destroys all copies of R2. In the

second, a program P2 corrects two copies of R1 and

one copy of R2, without destroying anything. We

have that ReadDepthGainðP1Þ ¼ 0:33 and

ReadDepthGainðP2Þ ¼ 0:20. Therefore, P1’s cor-

rection is judged superior. However, P2 preserves

copies of both reads, thus producing a dataset of su-

perior breadth of coverage of the reference genome.

We introduce two measures of the gain in breadth

coverage to cover this aspect, complementing the

previous ones. We handle the k-mer case first.

We note first that the depth of coverage is a prop-

erty of the dataset, whereas the breadth of coverage is

a property of the genome. Therefore, we shall define

a binary classification on k-merðGÞ. A k-mer K of

the genome is called ‘covered’ if K 2 k-merðDÞ.
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The k-mer is ‘not covered’ otherwise. TP becomes

the number of k-mers that are not covered before

correction but covered afterward, etc. The new

measure is KmerBreadthGain ¼ TP�FP
TPþFN, and the

impact on the breadth of coverage is assessed using

ORIGKMERBREADTH and CORRKMERBREADTH

defined as before and satisfying (1).

For reads, if all reads have the same length ‘, then

seqðDÞ ¼ ‘-merðDÞ, and the definition of

READBREADTHGAIN is similar with the above

KMERBREADTHGAIN, with k replaced by ‘. If the

reads do not have the same length, then TP is the

number of elements of seqðDÞ that did not occur in

G before but did afterward, FP represents the oppos-

ite and TN counts those that appeared both before

and after. For FN, we use j‘-merðGÞj, where ‘ is the

weighted average read length. As above,

we also introduce ORIGREADBREADTH and

CorrReadBreadth satisfying (1).

This way, KMERBREADTHGAIN measures the gain in

breadth of coverage as given by correct k-mers, and

READBREADTHGAIN measures the gain in breadth of

coverage as given by correct read sequences.

Unaltered real datasets
The first thing to note is that correction is much

easier for simulated datasets [7, 23, 24], giving the

false impression that a high percentage of errors

(often more than 99%) can be corrected. As this

does not happen in reality, artificial datasets are not

relevant for practice, and we consider only real data-

sets, described in detail in the Datasets section.

In addition to our arguments above, evaluation of

point correction of single errors cannot be performed

for real datasets, as it is not known where the errors

are or how they should be corrected. To surmount

this obstacle, in the literature, datasets are sometimes

mapped to the reference genome using read aligners,

the place and correct values of erroneous positions

being deduced from the information in the genome

[15, 23, 24]. However, this procedure has a severe

downside: many reads cannot be mapped at all or are

mapped ambiguously. Therefore, they have to be

removed from the dataset. As these are the most

difficult reads to correct, their elimination pro-

duces a different, much easier to correct, dataset.

Comparison using this modified dataset is no

longer relevant for the performance on the real

one. In our study, no dataset has been altered in

any way.

To conclude this section, let us further note that

we use only measures that are directly related to error

correction, as opposed to indirect indicators such as

the improvement in genome assembly quality or

alignment of reads [15, 21, 23, 24]. Assemblers usu-

ally have their own correcting steps, and it is unclear

how they interfere with the correcting programs

under evaluation. Aligners as well have their own

procedure that again interacts differently with various

programs. Both are expected to improve with good

correction of errors; however, we preferred not to

use the amount of improvement for performance

evaluation.

DATASETS
As mentioned in the previous section, we have used

only real datasets that have not been altered in any

way. Currently, the main platforms from Illumina

are HiSeq and MiSeq, with different parameters.

HiSeq has high output and low error rates. MiSeq

is a bench top machine, much cheaper, with much

lower output but also lower production time, and

significantly higher error rates. Correcting errors in

datasets produced by the two machines poses differ-

ent challenges, and for that reason we shall compare

the two separately.

We have included 13 HiSeq and 9 MiSeq datasets,

all recently produced, from a wide variety of refer-

ence genomes and different coverage levels. All de-

tails are given in Table 1. The datasets in each part

are sorted by the total number of base pairs. Included

in the comparison, for the first time, are three whole

human datasets, H11–13. The datasets H1, H4, H5

and H11 are from HiSeq 2500 machines, and the rest

from HiSeq 2000.

The quality of the original datasets can be seen in

Tables 2 and 3, in the columns labeled ‘Original’ (the

other columns are discussed in the Results section.)

The original quality is evaluated with respect to each

of the four measures, as given by ORIGREADDEPTH,

ORIGKMERDEPTH, ORIGREADBREADTH and

ORIGKMERBREADTH. It can be seen that a significant

ratio of reads and k-mers contain errors, making cor-

rection an essential step in improving the quality of

the data. HiSeq data have fewer errors, yet up to 60%

of the reads can be erroneous. This percentage can

be as high as 99% in MiSeq data. The percentage of

erroneous 20-mers is lower, but it can still reach 30%

for HiSeq and 60% for MiSeq data. For M1, M5, M8

and M9, almost all reads are erroneous.
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The breadth of coverage depends on both the

quality of the dataset and the depth of coverage.

The ORIGREADBREADTH is not expected to be very

high but the ORIGKMERBREADTH is. This happens

for the HiSeq data, where most datasets have

ORIGKMERBREADTH more than 90%, but not for

MiSeq, where we detect a wide range, from 50%

to 100%.

RESULTS
We present our results in Tables 2–8. All numbers

presented have been multiplied by 100 for readabil-

ity. Tables 4–8 are presented as heat maps, with

darker colors meaning better results. Complete in-

formation is provided in the Supplementary Material

(Supplementary_File_1.xlsx). Not all datasets could

be run by all programs, the reasons being given in the

caption of Table 4.

We have run all programs on the same DELL

PowerEdge R820 computer with 32 cores Intel

Xeon at 2.2 GHz and 1 TB of RAM, running

Linux Red Hat, CentOS 6.3. All programs have

been tested in parallel, except BLESS and HiTEC,

which do not have parallel modes. All programs

were run with default parameters as indicated in

their manuals, as this is the only way they can be

used in real tests, when reference genomes are not

available. The precise commands used to run all the

programs are given in the Supplementary Material

(Supplementary_File_2.pdf).

Comparison on HiSeq data
The error correction comparison on HiSeq data is

presented in Table 4 for the READDEPTHGAIN and

KMERDEPTHGAIN measures and in Table 5 for

READBREADTHGAIN and KMERBREADTHGAIN meas-

ures. Only Musket, RACER and SGA could run the

human datasets; therefore, we provide two averages,

one for the small- and medium-sized datasets H1-10

(denoted Avg10) and the other for all 13 datasets

(Avgall). The averages for HiTEC are very high be-

cause HiTEC could run only H1-6. SHREC also

failed to run five datasets. Under these conditions,

whenever necessary, we used head-to-head compari-

son to rank the programs.

Table 1: The HiSeq and MiSeq datasets used in our study

Dataset Organism Accession
number

Read
length

Number
of reads

Total bp Depth of
coverage

Reference
genome

Genome
length

HiSeq datasets
H1 Mycobacterium tuberculosis ERR400373 151 2092946 316 034 846 72 NC_000962.3 4 411532
H2 Salmonella enterica ERR230402 100 3257972 325797200 67 NC_011083.1 4 888 768
H3 Saccharomyces cerevisiae ERR422544 100 4 776774 477677400 40 R64-1-1 12071326
H4 Legionella pneumophila SRR801797 100 8 850220 885 022000 260 NC_002942.5 3397 754
H5 Escherichia coli SRR1191655 101 11726 414 1184367814 255 NC_000913.2 4 639 675
H6 Escherichia coli SRR490124 100 21553358 2155335 800 465 NC_000913.2 4 639 675
H7 Caenorhabditis elegans SRX218989 100 31642176 3164217600 32 WS222 100286 070
H8 Caenorhabditis elegans SRR543736 101 57 721732 5 829 894932 58 WS222 100286 070
H9 Drosophila melanogaster SRR823377 100 63 014 762 6301476200 52 Release 5 120381546
H10 Drosophila melanogaster SRR988075 101 75938 276 7669765 876 64 Release 5 120381546
H11 Homo sapiens ERX069715 100^102 1357 751670 137132918 670 43 Build 38 3209 286105
H12 Homo sapiens ERX069504 100^102 1637816924 165 419509324 52 Build 38 3209 286105
H13 Homo sapiens ERX069505 101 1708169546 172 525124146 54 Build 38 3209 286105

MiSeq datasets
M1 Escherichia coli SRR519926 251 801192 201099192 43 NC_000913.2 4 639 675
M2 Mycobacterium tuberculosis SRR1200797 50^250 1482716 348 224181 79 NC_000962.3 4 411532
M3 Salmonella enterica SRR1203044 35^250 1784 756 433166399 89 NC_011083.1 4 888 768
M4 Salmonella enterica SRR1206093 35^251 1977970 472 256906 97 NC_011083.1 4 888 768
M5 Listeria monocytogenes SRR1198952 35^251 2177 790 507 711040 171 NC_017546.1 2 973 801
M6 Pseudomonas syringae SRR1119292 35^251 2 576 622 639 853726 105 NC_007005.1 6 093 698
M7 Bifidobacterium dentium SRR1151311 35^251 3926 618 984280778 373 NC_013714.1 2 636367
M8 Escherichia coli SRR522163 251 11181452 2 806 544 452 605 NC_000913.2 4 639 675
M9 Orientia tsutsugamushi SRR1202083 301 10315 434 3104945 634 1460 NC_009488.1 2127051

Accession numbers are included for the datasets and for the corresponding reference genomes. The datasets in each group are sorted by the
total number of base pairs.
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The competition is very close for all four meas-

ures. For READDEPTHGAIN, BLESS is first for H1–10

and RACER is first overall. HiTEC, SGA,

Musket and SHREC are close behind. For human

datasets, SGA is first, RACER second and Musket

third.

For KMERDEPTHGAIN, HiTEC is first, followed by

RACER, BLESS, Musket and SHREC, all very

close. However, of these programs, HiTEC could

run the fewest datasets, and only RACER and

Musket could run all datasets. For human datasets,

the order changes: RACER is first, Musket is second

and SGA third.

In the case of READBREADTHGAIN, BLESS is first,

followed closely by RACER, HiTEC, SHREC,

Musket and SGA. For human datasets, SGA is

first, RACER second and Musket third. For

KMERBREADTHGAIN, SGA is first, followed by

Coral, BLESS, RACER and HiTEC. For human

datasets, SGA is first, Musket second and RACER

third. All programs actually decrease the k-mer

breadth of coverage.

Table 2: Improvement of the quality of HiSeq data

Dataset (ORIG jCORR)READDEPTH (ORIG jCORR)KMERDEPTH (ORIG jCORR)READBREADTH (ORIG jCORR)KMERBREADTH

Original Best
correction

Program Original Best
correction

Program Original Best
correction

Program Original Best
correction

Program

H1 80.15 92.40 BLESS 93.80 96.98 Musket 30.36 34.29 BLESS 98.54 98.51 Coral
H2 81.93 89.94 BLESS 92.99 95.31 HiTEC 39.68 42.42 BLESS 93.90 93.80 SGA
H3 82.01 88.15 RACER 90.76 92.54 RACER 26.46 28.14 BLESS 98.26 98.24 SGA
H4 66.73 97.43 RACER 88.41 98.36 HiTEC 80.38 90.09 BLESS 98.94 98.94 Coral
H5 47.83 54.98 BLESS 71.53 74.17 HiTEC 50.59 52.88 BLESS 84.08 82.52 SGA
H6 50.56 93.16 BLESS 86.16 97.62 HiTEC 79.67 96.51 BLESS 99.96 99.96 Coral
H7 68.13 84.98 SGA 90.98 95.25 RACER 18.08 21.92 BLESS 96.38 96.31 SGA
H8 69.70 77.81 RACER 78.96 81.47 RACER 31.34 34.13 BLESS 99.45 99.43 SGA
H9 46.23 55.98 BLESS 77.33 81.00 RACER 19.28 22.92 BLESS 93.19 92.80 SGA
H10 40.07 55.73 BLESS 75.36 80.20 Musket 19.97 26.36 BLESS 95.41 95.11 SGA
H11 49.17 80.51 SGA 94.23 96.43 RACER 19.79 30.16 SGA 98.86 98.81 SGA
H12 49.09 82.41 SGA 94.21 96.67 RACER 23.23 35.63 SGA 98.96 98.91 SGA
H13 78.90 84.78 SGA 95.08 96.83 RACER 35.05 37.12 SGA 98.54 98.48 SGA

The quality of the original data is presented in the ‘Original’ columns as given by ORIGREADDEPTH, ORIGKMERDEPTH, ORIGREADBREADTH and
ORIGKMERBREADTH. The quality of the corrected data is presented in the ‘Best correction’ columns where CorrReadDepth, CORRKMERDEPTH,
CorrReadBreadth and CORRKMERBREADTH are given for thebest correction obtained in each case, obtainedby the program indicated in the corres-
ponding ‘Program’column.

Table 3: Improvement of the quality of MiSeq data

Dataset (ORIG jCORR)READDEPTH (ORIG jCORR)KMERDEPTH (ORIG jCORR)READBREADTH (ORIG jCORR)KMERBREADTH

Original Best
correction

Program Original Best
correction

Program Original Best
corr.

Program Original Best
corr.

Program

M1 1.46 27.38 SGA 50.57 69.07 RACER 0.25 6.98 BLESS 100.00 100.00 Coral/SGA
M2 64.92 85.29 RACER 93.21 96.57 RACER 18.27 23.43 RACER 98.60 98.60 Coral
M3 23.21 33.26 RACER 72.79 77.97 RACER 5.78 7.61 RACER 83.16 83.16 Coral
M4 52.60 88.13 RACER 84.77 93.71 RACER 14.15 20.79 RACER 97.51 97.51 Coral
M5 2.35 3.21 RACER 41.01 43.36 RACER 0.87 0.96 RACER 50.16 49.69 SGA
M6 11.40 25.99 RACER 67.48 74.34 RACER 3.62 6.97 RACER 78.50 78.50 Coral
M7 69.35 95.74 RACER 94.36 98.06 RACER 58.28 70.13 RACER 99.99 99.99 Coral
M8 2.71 39.47 HiTEC 62.11 80.16 HiTEC 5.92 69.85 BLESS 100.00 100.00 HiTEC
M9 0.29 0.68 RACER 42.90 46.73 HiTEC 1.01 1.96 BLESS 74.95 74.95 Coral

The quality of the original data is presented in the ‘Original’ columns as given by ORIGREADDEPTH, ORIGKMERDEPTH, ORIGREADBREADTH and
ORIGKMERBREADTH. The quality of the corrected data is presented in the ‘Best correction’ columns where CorrReadDepth, CORRKMERDEPTH,
CorrReadBreadth and CORRKMERBREADTH are given for the best correction obtained in each case, obtained by the program indicated in the corres-
ponding ‘Program’column.
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Table 2 gives the top program for each particular

test. This table is dominated by BLESS, RACER

and SGA.

Comparison on MiSeq data
The error correction comparison on MiSeq data

is presented in Table 6 for all four

measures, READDEPTHGAIN, KMERDEPTHGAIN,

READBREADTHGAIN and KMERBREADTHGAIN, in

order. BLESS and HiTEC could not run six of the

nine datasets, M2-7, because they contain reads of

different lengths. Musket performance is clearly the

lowest, which is unexpected in view of its good results

on HiSeq data. The TP values of Musket are several

orders of magnitude lower than those of the best pro-

grams; they are equal to zero for four datasets.

Essentially, Musket left the MiSeq datasets untouched.

As opposed to the HiSeq case, the competition

for the coverage depth is not very close. For

READDEPTHGAIN, RACER is first, followed by

SGA. We note good performance for BLESS and

HiTEC on the three datasets they could run.

For KMERDEPTHGAIN, RACER is first again

with no other program close to it. However,

HiTEC is first on two out of three datasets that it

could run.

For READBREADTHGAIN, RACER is first again but

with SGA and SHREC following closely. However,

BLESS is the best for all three datasets it could

run, with HiTEC second for two of those. For

KMERBREADTHGAIN, Coral is the best with SGA

coming in second place. Again, all programs decrease

the k-mer breadth of coverage. We have not

Table 4: Comparison on HiSeq datasets for
READDEPTHGAIN and KMERDEPTHGAIN. Darker colors indi-
cate better results

Data BLESS Coral HiTEC Musket RACER SGA SHREC
READDEPTHGAIN

H1 61.72 51.85 58.41 58.30 59.05 51.16 51.28
H2 44.30 41.16 43.37 42.77 42.72 40.14 42.64
H3 34.07 28.41 33.42 33.09 34.13 32.73 31.56
H4 91.64 55.66 92.01 86.56 92.27 86.94 88.90
H5 13.52 12.32 13.70 13.08 13.35 12.35 (e)
H6 86.16 4.37 84.46 79.08 82.84 55.60 65.96
H7 51.65 46.49 (d) 41.56 52.43 52.89 (f)
H8 25.14 24.21 (d) 23.68 26.77 25.97 −7.12
H9 18.14 10.96 (d) 16.79 17.91 17.03 14.80
H10 26.13 24.10 (d) 26.04 25.92 25.63 24.44
H11 (a) (c) (a) 53.28 57.49 61.66 (f)
H12 (a) (c) (a) 55.67 61.30 65.46 (e)
H13 (b) (c) (c) 21.25 26.53 27.86 (e)
Avg 10 45.25 29.95 54.23 42.10 44.74 40.04 39.06
Avg all 45.25 29.95 54.23 42.40 45.59 42.72 39.06
KMERDEPTHGAIN

H1 51.14 34.08 51.00 51.28 51.11 34.20 41.84
H2 31.36 26.92 33.03 30.03 31.18 26.29 32.45
H3 17.86 14.45 18.22 18.55 19.26 15.96 16.79
H4 83.20 46.92 85.83 80.72 84.82 75.42 82.91
H5 8.79 7.13 9.27 8.41 8.74 7.14 (e)
H6 79.52 2.92 82.83 72.04 78.45 41.68 67.72
H7 42.21 36.79 (d) 38.92 47.35 42.46 (f)
H8 9.92 8.51 (d) 10.72 11.92 8.95 2.01
H9 14.43 7.81 (d) 15.40 16.19 12.90 14.24
H10 18.24 16.60 (d) 19.64 19.55 17.55 18.62
H11 (a) (c) (a) 36.73 38.11 31.79 (f)
H12 (a) (c) (a) 37.73 42.42 35.93 (e)
H13 (b) (c) (c) 31.38 35.49 28.26 (e)
Avg 10 35.67 20.21 46.70 34.57 36.86 28.25 34.57
Avg all 35.67 20.21 46.70 34.73 37.28 29.12 34.57

The meaning of the letters in parentheses, explaining why a program
could not be run for a dataset, is: (a) reads with differ-
ent lengths; (b) longer than 7 days to run; (c) outof space; (d) segmenta-
tion fault; (e) java.lang.NegativeArraySizeException; (f)
java.lang.ArrayIndexOutOfBoundsException.

Table 5: Comparison on HiSeq datasets for
READBREADTHGAIN and KMERBREADTHGAIN. Darker colors
indicate better results

Data BLESS Coral HiTEC Musket RACER SGA SHREC
READBREADTHGAIN

H1 5.66 4.42 5.00 4.99 5.04 4.36 4.37
H2 4.54 4.15 4.19 4.35 4.32 4.06 4.11
H3 2.28 1.88 2.16 2.13 2.23 2.13 2.03
H4 49.49 31.05 44.96 47.05 49.15 47.10 43.63
H5 4.63 4.09 4.35 4.37 4.43 4.08 (e)
H6 82.87 1.32 80.77 77.59 79.37 59.38 68.67
H7 4.69 4.10 (d) 3.63 4.62 4.63 (f)
H8 4.06 3.63 (d) 3.43 4.06 3.96 −2.96
H9 4.50 2.49 (d) 3.71 4.13 3.95 3.26
H10 7.98 7.12 (d) 7.60 7.82 7.77 7.16
H11 (a) (c) (a) 11.17 12.05 12.92 (f)
H12 (a) (c) (a) 13.76 15.10 16.15 (e)
H13 (b) (c) (c) 2.42 3.02 3.18 (e)
Avg 10 17.07 6.43 23.57 15.89 16.52 14.14 16.28
Avg all 17.07 6.43 23.57 14.32 15.03 13.36 16.28
KMERBREADTHGAIN

H1 −3.08 −1.74 −6.22 −4.02 −3.00 −2.09 −4.16
H2 −1.91 −1.92 −1.90 −1.85 −1.89 −1.73 −1.89
H3 −1.07 −5.09 −1.26 −0.93 −1.12 −0.88 −1.02
H4 −0.36 −1.65 −1.72 −1.72 −1.72 −1.73 −1.72
H5 −11.60 −9.98 −11.75 −11.36 −11.69 −9.83 (e)
H6 −2.20 0.00 −4.92 −10.63 −2.88 −0.21 −5.71
H7 −5.10 −2.68 (d) −13.46 −7.69 −1.99 (f)
H8 −38.17 −10.96 (d) −180.53 −86.13 −2.84 −285.54
H9 −30.27 −16.51 (d) −33.87 −17.15 −5.70 −33.27
H10 −24.62 −39.15 (d) −30.01 −19.22 −6.49 −33.34
H11 (a) (c) (a) −6.30 −6.06 −4.89 (f)
H12 (a) (c) (a) −7.15 −7.15 −5.63 (e)
H13 (b) (c) (c) −5.00 −5.60 −4.32 (e)
Avg 10 −11.84 −8.97 −4.63 −28.84 −15.25 −3.35 −45.83
Avg all −11.84 −8.97 −4.63 −23.60 −13.18 −3.72 −45.83

The meaning of the letters in parentheses, explaining why a
program could not be run for a dataset, is: (a) reads with differ-
ent lengths; (b) longer than 7 days to run; (c) out of space; (d) seg-
mentation fault; (e) java.lang.NegativeArraySizeException; (f)
java.lang.ArrayIndexOutOfBoundsException.
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considered the performance of Musket. It has the

smallest amount of decrease but that is because it

leaves the initial datasets largely unchanged and it

would be misleading to consider its performance

the best.

Table 3 gives the top program for each particular

test. This table is dominated by RACER.

Time and space
The time and peak memory usages are shown in

Table 7 for HiSeq data and Table 8 for MiSeq

data. To be able to present an easily readable com-

parison, we give the time in seconds and memory in

megabytes, both per mega base pairs of input

data. The actual time and memory values are pre-

sented in Supplementary Material (Supplementary_

File_1.xlsx). As mentioned above, BLESS

and HiTEC do not provide a parallel mode, so we

give their time and memory for running in serial

mode.

Because of the size of the HiSeq datasets, the time

and space requirements are more important in this

case. For the datasets H1-10, RACER is the fastest,

followed closely by Musket and, at some distance, by

Table 6: Comparison on MiSeq datasets. Darker
colors indicate better results

Data BLESS Coral HiTEC Musket RACER SGA SHREC
READDEPTHGAIN

M1 22.04 0.06 25.27 0.00 26.10 26.30 13.38
M2 (a) 30.65 (a) −0.02 58.06 55.10 53.43
M3 (a) 10.23 (a) 0.06 13.09 11.56 −12.36
M4 (a) 61.32 (a) 0.70 74.96 66.16 −39.56
M5 (a) 0.42 (a) 0.06 0.88 0.64 −1.27
M6 (a) 13.03 (a) 0.00 16.46 14.60 −1.31
M7 (a) 77.71 (a) 0.00 86.11 67.74 −33.41
M8 33.61 0.01 37.78 0.00 20.19 22.72 19.95
M9 0.37 0.00 0.39 0.00 0.39 0.18 0.33
Avg 18.67 21.49 21.15 0.09 32.92 29.44 −0.09
KMERDEPTHGAIN

M1 21.22 0.04 36.29 0.00 37.42 9.50 23.81
M2 (a) 22.32 (a) −0.16 49.48 41.22 42.80
M3 (a) 11.78 (a) 0.07 19.05 12.20 8.93
M4 (a) 34.36 (a) 0.46 58.72 33.33 22.66
M5 (a) 2.81 (a) 0.12 4.00 2.81 −1.72
M6 (a) 11.40 (a) 0.01 21.09 11.28 16.42
M7 (a) 48.40 (a) 0.00 65.59 38.27 59.46
M8 32.74 0.91 47.65 0.00 30.67 11.82 35.55
M9 4.28 0.61 6.71 0.00 6.19 1.61 5.74
Avg 19.42 14.74 30.22 0.06 32.47 18.00 23.74
READBREADTHGAIN

M1 6.75 0.01 4.22 0.00 4.36 4.39 2.26
M2 (a) 3.38 (a) −0.02 6.31 5.99 5.81
M3 (a) 1.50 (a) 0.00 1.94 1.70 1.70
M4 (a) 6.29 (a) 0.02 7.73 6.81 6.67
M5 (a) 0.07 (a) 0.01 0.10 0.09 0.09
M6 (a) 2.76 (a) 0.00 3.47 3.14 2.57
M7 (a) 25.48 (a) 0.00 28.41 22.60 26.72
M8 67.96 0.01 54.46 0.00 33.65 37.29 33.82
M9 0.97 0.00 0.47 0.00 0.46 0.28 0.42
Avg 25.22 4.39 19.72 0.00 9.60 9.14 8.90
KMERBREADTHGAIN

M1 −187.97 0.00 −1206.02 0.00 −12.78 0.00 −110.53
M2 (a) −1.57 (a) 0.01 −6.60 −3.98 −6.41
M3 (a) −2.61 (a) −0.01 −3.76 −2.91 −3.61
M4 (a) −0.35 (a) 0.00 −0.60 −0.36 −0.91
M5 (a) −7.49 (a) −0.95 −12.43 −6.56 −11.71
M6 (a) −3.06 (a) 0.00 −5.12 −3.33 −4.77
M7 (a) −0.51 (a) 0.00 −6.15 −1.54 −6.67
M8 −6.67 0.00 5.00 0.00 −5.00 −0.83 −2.50
M9 −39.71 −1.70 −40.69 0.00 −42.11 −15.28 −37.07
Avg −78.12 −1.92 −413.90 −0.11 −10.51 −3.87 −20.46

The meaning of the letters in parentheses, explaining why a program
could not be run for a dataset, is: (a) reads with different
lengths; (b) longer than 7 days to run; (c) out of space; (d) segmenta-
tion fault; (e) java.lang.NegativeArraySizeException; (f)
java.lang.ArrayIndexOutOfBoundsException.

Table 7: Time and memory for HiSeq datasets.
Darker colors indicate better results

Data BLESS Coral HiTEC Musket RACER SGA SHREC
Time (s/Mb)
H1 8.59 1.43 5.41 0.32 0.15 0.59 1.80
H2 7.73 1.40 3.82 0.25 0.30 0.57 1.06
H3 4.13 0.84 5.01 0.20 0.15 0.52 0.87
H4 8.44 2.42 6.79 0.29 0.37 0.76 1.41
H5 8.04 2.91 6.74 0.21 0.30 0.62 (e)
H6 8.28 2.17 6.81 0.51 0.33 0.74 1.82
H7 12.38 1.79 (d) 0.29 0.30 0.74 (f)
H8 12.86 1.42 (d) 0.27 0.28 0.74 2.13
H9 12.28 1.80 (d) 0.46 0.36 0.78 2.03
H10 14.54 1.60 (d) 0.33 0.32 0.79 2.03
H11 (a) (c) (a) 0.29 0.80 1.08 (f)
H12 (a) (c) (a) 0.31 0.50 1.06 (e)
H13 (b) (c) (c) 0.27 0.49 1.03 (e)
Avg 10 9.73 1.78 5.76 0.31 0.28 0.69 1.64
Avg all 9.73 1.78 5.76 0.31 0.36 0.77 1.64
Space (MB/Mb)
H1 0.04 226.91 18.94 9.74 9.79 9.06 3172.65
H2 0.04 219.17 19.05 9.36 9.68 8.79 3077.78
H3 0.05 153.14 19.96 6.40 6.94 6.05 2099.05
H4 0.02 90.31 10.60 3.45 4.37 3.45 1132.93
H5 0.01 68.19 7.67 2.58 3.09 2.63 (e)
H6 0.02 45.34 5.01 1.43 2.15 1.61 465.23
H7 0.05 33.31 (d) 0.99 2.78 1.19 (f)
H8 0.03 23.88 (d) 0.81 2.50 0.81 171.99
H9 0.03 23.10 (d) 0.75 2.82 0.78 159.14
H10 0.03 21.40 (d) 0.83 2.38 0.70 130.76
H11 (a) (c) (a) 0.44 1.69 0.36 (f)
H12 (a) (c) (a) 0.41 2.36 0.35 (e)
H13 (b) (c) (c) 0.35 1.38 0.34 (e)
Avg10 0.03 90.48 13.54 3.63 4.65 3.51 1301.19
Avgall 0.03 90.48 13.54 2.89 4.00 2.78 1301.19

Time is given in seconds and memory in megabytes, both per input
mega base pair. The meaning of the letters in parentheses, explain-
ing why a program could not be run for a dataset, is: (a) reads with
different lengths; (b) longer than 7 days to run; (c) out of space; (d) seg-
mentation fault; (e) java.lang.NegativeArraySizeException; (f)
java.lang.ArrayIndexOutOfBoundsException.
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SGA. When considering all datasets, Musket comes

first and RACER comes second. BLESS is by far the

slowest, not only because of running in serial mode,

but also due to spending a lot of time reading/writ-

ing files, to reduce memory consumption. Because of

this, BLESS was not able to correct the human data-

set H13 after running for 7 days. Also, BLESS took

longer to correct the H10 dataset than the time

Musket or RACER required for any of the human

datasets.

The peak memory of BLESS is by far the lowest,

two orders of magnitude lower than second best.

SGA is second followed closely by Musket and

RACER. Owing to high space requirements,

Coral, SHREC and, to a lesser degree, HiTEC

cannot run large datasets.

For MiSeq data, the space is usually not an issue,

due to smaller size of the datasets. The order is simi-

lar to that for HiSeq data, with BLESS two orders of

magnitude ahead, then Musket, SGA and RACER.

Speed is more important, as the MiSeq machines

have a much lower cycle time. The order is

Musket, RACER and SGA. The time taken by

BLESS to correct M8 and M9 is about half a day,

comparable with one machine cycle.

Improvement of the data
The actual improvement for each HiSeq dataset is

presented in Table 2 and for each MiSeq dataset in

Table 3, where the quality of both the original data-

set and the best correction obtained with respect to

each of the four measures is presented. The best

result is given in each case, produced by the program

mentioned. Each table is divided into four parts, one

for each of our measures. The connection between

Tables 2 and 3 and the gain in Tables 4–6 is given by

the equation (1). For instance, consider the dataset

H1 in the first part of Table 2. We have

OrigReadDepth ¼ 80:15% and, from Table 4,

ReadDepthGain ¼ 61:72%, which adds

ReadDepthGainð1�OrigReadDepthÞ ¼ 12:25%

correct reads to obtain, using (1), CorrReadDepth

¼ 92:40%, where the best gain was obtained by

BLESS.

For HiSeq data, the improvement is significant for

the reads, for both depth and breadth of coverage.

On the average, the read depth of coverage is

increased by >17.5% and the read breadth of cover-

age by about 6%. Dramatic improvements are some-

times obtained, of 42.6% depth increase and 16.8%

breadth increase for H6. The first two human data-

sets have been quite significantly improved as well.

The numbers are expected to be lower for k-mers;

the k-mer coverage depth is increased on the average

by 4%, however, the k-mer breadth of coverage is

unexpectedly decreased by 0.2% on the average. The

depth increase can go as high as 11.5% (for H6), while

the breadth decrease can be as high as 1.6% (for H5).

For MiSeq data, similar trends are identified. Owing

to higher read length, the absolute increase in read

coverage depth is slightly lower, 13% on the average,

while the read coverage breadth increases by 7.7% on

the average. High variability allows for dramatic

improvement; for example, in the case of M1,

the corrected dataset contains 18.7 times more correct

reads than the original and the read coverage

breadth is increased 27.5 times. Each of M2, M4

and M6–8 datasets has been much improved through

correction.

The k-mer coverage depth increases 5.4%, while

the k-mer coverage breadth decreases again by 0.37%.

Note the significant decrease for M5, by 3.27%.

Table 8: Time and memory for MiSeq datasets.
Darker colors indicate better results

Data BLESS Coral HiTEC Musket RACER SGA SHREC
Time (s/Mb)
M1 12.41 1.03 5.58 0.08 0.85 1.32 3.40
M2 (a) 1.74 (a) 0.18 0.18 0.58 0.74
M3 (a) 15.15 (a) 0.10 0.33 0.72 1.38
M4 (a) 2.09 (a) 0.10 0.37 0.79 1.51
M5 (a) 3.03 (a) 0.12 0.12 0.40 1.33
M6 (a) 8.45 (a) 0.09 0.35 0.81 1.53
M7 (a) 9.94 (a) 0.07 0.30 0.71 1.05
M8 16.90 2.03 6.35 0.08 0.45 1.26 5.12
M9 14.40 1.84 7.07 0.07 0.34 1.21 2.56
Avg 14.57 5.03 6.34 0.10 0.37 0.87 2.07
Space (MB/Mb)
M1 0.12 369.66 20.31 6.97 30.63 14.31 4985.94
M2 (a) 206.49 (a) 8.95 7.93 8.20 2879.37
M3 (a) 162.12 (a) 6.19 8.46 6.65 2314.74
M4 (a) 159.98 (a) 5.68 7.64 6.17 2123.14
M5 (a) 146.36 (a) 6.14 6.64 5.87 1974.88
M6 (a) 121.54 (a) 4.88 6.11 4.49 1567.03
M7 (a) 80.53 (a) 3.17 3.18 3.02 1018.68
M8 0.06 48.79 4.17 0.56 2.53 1.36 357.28
M9 0.02 33.87 3.27 0.52 1.37 1.15 322.93
Avg 0.07 147.71 9.25 4.78 8.28 5.69 1949.33

Time is given in seconds and memory in megabytes, both per input
mega base pair. The meaning of the letters in parentheses, explain-
ing why a program could not be run for a dataset, is: (a) reads with dif-
ferent lengths; (b) longer than 7 days to run; (c) out of space;
(d) segmentation fault; (e) java.lang.NegativeArraySizeException; (f)
java.lang.ArrayIndexOutOfBoundsException.
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CONCLUSIONAND FURTHER
RESEARCH
Concerning the ranking of the correcting programs,

it is clear that there is no single winner. For HiSeq

data, BLESS, Musket, RACER and SGA are the best

programs. BLESS has often good gain and the lowest

memory requirements, but it has the longest running

time, does not run in parallel and cannot run datasets

with different read lengths. Musket comes rarely on

top, but it is often not far from the best and it runs

fast with low memory requirements. RACER has

often the highest gain and speed but uses a fairly

large amount of memory for human datasets. SGA

has one of the top gains and low space requirements,

but it is slower than RACER and Musket. Using any

of the four programs will provide good results.

Only Musket, RACER and SGA can run human

datasets.

For MiSeq data, RACER is the best in three of

the four measures, read coverage (depth and breadth)

and k-mer coverage depth. For the fourth, k-mer

coverage breadth, SGA provides the smallest de-

crease. BLESS and HiTEC produce good results

whenever they can run.

Looking from the data point of view, the overall

improvement of the datasets is quite important, in

spite of the slight decrease in k-mer coverage

breadth, making the correction of crucial importance

in using both HiSeq and MiSeq data. Room for

improvement remains in all aspects. The read cover-

age depth can be theoretically more than doubled for

HiSeq data and increased over 5 times for MiSeq

data. The k-mer coverage depth can be increased

3 times for HiSeq data and 6 times for MiSeq data.

The increase in coverage breadth depends not

only on the quality of the correction but also on

the coverage depth, so it is more difficult to assess

how much room for improvement there is.

However, one goal is to reduce the decrease in k-

mer coverage breadth exhibited by all programs. A

goal that may be hard to achieve is to design pro-

grams that improve the current state of the art

with respect to all four measures simultaneously.

If this cannot be achieved, then the future pro-

grams may become more specialized by targeting

improvements of only some aspects of the original

datasets.

A different and important aspect that requires fur-

ther investigation is that of biological significance of

the correction. Important information such as het-

erozygosity or single nucleotide polymorphism

should not be destroyed by correction. Also, we

have seen that all programs reduce the k-mer

breadth of coverage. Further investigation is neces-

sary to determine how important the lost informa-

tion is.

SOFTWAREAVAILABILITY
The source code of the programs we used for evalu-

ation is freely available at http://www.csd.uwo.ca/

�ilie/CorrectingIlluminaData/. The first is read-
Search, which computes READDEPTHGAIN and

READBREADTHGAIN as well as any related informa-

tion, such as ORIGREADDEPTH, ORIGREADBREADTH,

CorrReadDepth;CorrReadBreadth. It uses a

suffix array [31] built on the reference genome,

using the libdivsufsort library of Yuta Mori

(code.google.com/p/libdivsufsort/) and the longest

common prefix array computed using the algorithm

of [32]. The second program, kmerSearch, com-

putes KMERDEPTHGAIN and KMERBREADTHGAIN

as well as any related information, such as ORIGK-

MERDEPTH, ORIGKMERBREADTH, CORRKMERDEPTH

and CORRKMERBREADTH. It is implemented using

the same strategy as our RACER software [22].

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Error correction is essential for improving Illumina sequencing
data before using it in applications.

� Existing correcting programs are effective, recovering an im-
portant amount of erroneous data, yet significant room for im-
provement remains.

� Recommendedprograms:

^ HiSeq data: BLESS,Musket, RACER and SGA.
^ MiSeq data: RACER.
^ Human data: Musket, RACER and SGA.
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